
ProjectTitle: SAT: A ScalableAnalysisToolkit
PI: Prof.AlexanderAiken
Period:8/1/98-7/31/2001
Institution:Universityof California,Berkeley
Address:UC Berkeley,Berkeley,CA 94720
ContractNumber:NAG2-1210

Final Report (Summary of Research)

The SAT project aimed to demonstrate that it is feasible and useful to statically detect

software bugs in very large systems. The technical focus of the project was on a

relatively new class of constraint-based techniques for analysis software, where the

desired facts about programs (e.g., the presence of a particular bug) are phrased

as constraint problems to be solved.

At the beginning of this project, the most successful forms of formal software analysis

were limited forms of automatic theorem proving (as exemplified by the analyses used in

language type systems and optimizing compilers), semi-automatic theorem proving for

full verification, and model checking. With a few notable exceptions these approaches

had not been demonstrated to scale to software systems of even 50,000 lines of code.

Realistic approaches to large-scale software analysis cannot hope to make every

conceivable formal method scale. Thus, the SAT approach is to mix different methods in

one application by using coarse and fast but still adequate methods at the largest scales,

and reserving the use of more precise but also more expensive methods at smaller

scales for critical aspects (that is, aspects critical to the analysis problem under

consideration) of a software system. The principled method proposed for combining a

heterogeneous collection of formal systems with different scalability characteristics is

mixed constraints. This idea had been used previously in small-scale applications with

encouraging results: using mostly coarse methods and narrowly targeted precise methods,

useful information (meaning the discovery of bugs in real programs) was obtained with

excellent scalability.

The SAT system is constraint-based, meaning that analysis are formulated as systems of

constraints generated from the program text. Constraint resolution (i.e., solving the

constraints) computes the desired information. Mixed constraints combine multiple

constraint languages in a single application. Individual constraint languages are treated

as generic "building blocks" that can be combined in a structured way to create new

analysis for specific problems. The framework is extensible, meaning that new constraint

languages can be added that conform to a standard interface.

SAT very successfully demonstrated the idea of applying constraint-based analysis to

very large programs. Using alias analysis of C programs as a paradigmatic example---

alias analysis is critical to many software engineering tools, particularly for the accurate

-1-



detectionof bugsin software---wedemonstratedin aseriesof paperstechniquesfor
extendingtheapplicationof aliasanalysisfrom programsof a few thousandlinesup to,
eventually,440,000linesof C code. Thisrepresentedan improvementof two ordersof
magnitudeandwasfor two yearsfar andawaythemosteffectiveform of aliasanalysis
known. Theupsurgein interestin scalablealiasanalysisin theresearchcommunitywas,
webelieve,inspiredby theprogresswe made,andhassubsequentlyledto the
developmentof manynewtechniques,all constraint-basedandkin to thetechniqueswe
presented.

Thestatedgoalof theprojectwasto analyzea 1,000,000line program. While wecame
close,weneverdid achievethisgoal,becausewe discoveredthatthereareno 1,000,000
lineprogramsin thepublicdomain! Thelargestavailableprogramsareabouthalf that
size,andthatis wherewestopped:weeventuallyranoutof programs,notout of
scalabilityof our techniques.Much largerprogramsareavailablein industry,of course,
but theseareproprietaryandnoteasyto obtainfor researchpurposesoutsideof the
corporationsthatown them.

In theareaof detectingbugsin software,theprojectdevelopedthreedistinct systems.
Thefirst wasCarillon, atool for detectingyear2000errorsin C programs.This system
wasconstructedmainly to validatethehypothesisthatthemixed-constrainttoolkit
underlyingSAT providedaneffectivetool for rapidly developingnewprogramanalyses.
This turnedout to betrue: Carillonwasdonein 1manmonthby asingleprogrammer
who knewnothingaboutYear2000problemsor SAT whenhestarted.

Thesecondeffort wasatool for detectingbuffer overrunsin C programs.Buffer
overruns,or theability in C for programsto write pasttheendof anarray,area major
securityproblemtoday,asmanybufferoverrunscanbeexploitedto taking controlof a
machine.Many, if not most,computervirusesarebasedonexploiting bufferoverruns. In
this work,wedevelopedaconstraint-basedmethodfor predictingthesizeof anarrayand
thetotalsizeusedby theprogram;by comparingthetwo wecouldpotentiallyidentify
bufferoverruns.This workedsurprisinglywell in practice,aswe foundexploitable
securityholesin verywidely usedsoftwaresuchastheLinux networkingpackages.

In thethird pieceof work, we identifiedavery broadclassof propertiesthatcouldbe
checkedby allowingprogrammersto addtheir own typequalifiersto a language'stype
system.For example,acertainroutinemayrequirethat all of the lists it is passedas
argumentsbesorted.By addingqualifierssorted/unsortedto thetypesystem,andnoting
thatthesortingfunctionproducesresultsof type "sortedlist", it becomespossibleto
checkthiskind of invariant. Thishasopenedupa wholefield of inquiry for us, aswe
investigatewhatkindsof typequalifierswill helpusto analyzewhatsortsof program
properties.

Attachedis a list of publicationsproducedby theprojectaswell asURLs of distributed
softwaresystems.

-2-



Software

BANE: A Constraint-Based Analysis Toolkit

bane.cs.berkeley.edu

Carillon: A Tool for Detecting Y2K Bugs in C Programs

bane.cs.berkeley.edu/carillon

Publications

J. Foster, M. Faehndrich, and A. Aiken. Polymorphic versus Monomorphic Flow-

Insensitive Points-to Analysis for C, The 2000 Static Analysis Symposium, pages 175-

198, June 2000.

D. Wagner, J. Foster, E. Brewer, and A. Aiken. A First Step Towards Automated

Detection of Buffer Overrun Vulnerabilities. Proceedings of the 2000 Network and

Distributed Systems Security Conference, pages 3-17, February 2000.

B. Liblit and A. Aiken. Type Systems for Distributed Data Structures, ACM Symposium

on Principles of Programming Languages, pages 199-213, January 2000.

Z. Su, M. Faehndrich, and A. Aiken. Projection Merging: Reducing Redundancies in

Inclusion Constraint Graphs, ACM Symposium on Principles of Programming

Languages, pages 81-95, January 2000.

J. Foster, M. Faehndrich, and A. Aiken. A Theory of Type Qualifiers. Proceedings of the

SIGPLAN Conference on Programming Language Design and Implementation, pages

192-203, Atlanta, Georgia, June 1999 (with J. Foster and M. Faehndrich).

M. Faehndrich, J. Foster, and Z. Su, and A. Aiken. Partial Online Cycle Elimination in

Inclusion Constraint Graphs. In Proceedings of the SIGPLAN Conference on

Programming Language Design and Implementation, pages 85-96, Montreal, Canada,

June 1998.

-3-


